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Abstract. The Single Source Shortest Path (SSSP) computation over
large graphs has raised significant challenges to the memory capacity and
processing efficiency. Utilizing disk-based parallel iterative computing is
an economic solution. However, costs of disk I/O and communication
affect the performance heavily. This paper proposes a state-transition
model for SSSP and then designs two optimization strategies based on it.
First, we introduce a tunable hash index to reduce the scale of wasteful
data loaded from the disk. Second, we propose a new iterative mechanism
and design an Across-step Message Pruning (ASMP) policy to deal with
the communication bottleneck. The experimental results illustrate that
our SSSP computation is 2 times faster than a basic Giraph (a memory-
resident parallel framework) implementation. Compared with Hadoop
and Hama (disk-resident parallel frameworks), the speedup is 21 to 43.

1 Introduction

The Single Source Shortest Path (SSSP) computation is a classical problem
with numerous applications and has been well-studied over the past decades.
However, new challenges have been raised by the rapid growth of graph data. For
instance, up to March 2012, Facebook has owned about 900 million vertices (i.e.,
users) and over 100 billion edges. Such large graphs have exceeded the memory
capacity of a single machine [1]. Even for memory-resident parallel frameworks
[2,3], the data processing capacity of a given cluster is also limited [4]. This
problem can be relieved by enlarging the cluster scale, but the consumption will
also increase. It is an economic solution if we extend memory-resident parallel
frameworks by spilling data on the disk [5]. In this case, how to reduce costs
of disk I/O and message communication becomes challenging especially for the
iterative computation tasks, such as SSSP.

For in-memory algorithms on SSSP, some are difficult to be executed in par-
allel due to the inherent priority order of relaxation and others perform poorly if
data are organized as their sophisticated structures on the disk [6,7]. External-
memory algorithms with the polynomial I/O complexity have also been pro-
posed [8]. However, the practical performance is unsatisfactory [9] considering
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the impact of wasteful data (load a block of data from the disk but only use
a portion). In addition, they are all centralized algorithms and take no account
of the communication cost. Recently, G. Malewicz et al. propose a new paral-
lel iterative implementation for SSSP (P-SSSP) and evaluate its performance on
Pregel, a memory-resident parallel framework [2] based on the Bulk Synchronous
Parallel (BSP) model [10]. Although its outstanding performance is impressive,
the runtime will increase rapidly if it is implemented on disk-based frameworks,
such as Hama and Hadoop [5,11]. I/O costs incurred by reading wasteful data
may offset the parallel gains. Furthermore, the large scale of messages will also
exacerbate costs of disk-accesses and communication. In this paper, we aim to
crack the nut for these two problems of disk-resident P-SSSP over large graphs.

Based on the theoretical and experimental analysis on P-SSSP, we divide iter-
ations into three stages: divergent → steady → convergent, and then propose a
state-transition model. It adopts a bottom-upmethod to evaluate which stage the
current iteration belongs to. Afterwards, two optimization policies are designed
by analyzing features of the three states.

For divergent and convergent states, the scale of processed data will shade as
the iteration progresses, which leads to huge costs of reading wasteful data. A
tunable hash index is designed to skip wasteful data to the utmost extent by
adjusting the bucketing granularity dynamically. The time of adjusting depends
on the processed data scale instead of inserting or deleting elements, which is
different from existing mechanisms [12,13]. In addition, for different adjusting
operations (i.e., bucketing granularity), we adopt a Markov chain to estimate
their cumulative impacts for iterations and then execute the optimal plan. An-
other optimization is an Across-step Message Pruning (ASMP) policy. The large
scale of messages during the steady state incurs expensive costs of disk I/O and
communication. The further analysis shows that a considerable portion of mes-
sages are redundant (i.e., the value of a message is not the real shortest distance).
By extending BSP, we propose a new iterative mechanism and design the ASMP
policy to prune invalid messages which have received. Then a large portion of
new redundant messages will not be generated.

Experiments illustrate the runtime of our tunable hash index is 2 times as
fast as that of a static one because roughly 80% of wasteful data are skipped.
The ASMP policy can reduce the message scale by 56% during the peak of
communication, which improves the performance by 23%. The overall speedup
of our P-SSSP computation compared to a basic implementation of Giraph [3],
an open-source clone of Pregel, is a factor of 2. For Hadoop and Hama, the
speedup is 21 to 43. In summary, this paper makes the following contributions:

– State-Transition Model: We propose a state-transition model which di-
vides iterations of P-SSSP into three states. Then we analyze characteristics
of the three states, which is the theoretical basis for optimization policies.

– Tunable Hash Index: It can reduce costs of reading wasteful data dy-
namically as the iteration progresses, especially for divergent and convergent
states. A Markov chain is used to choose the optimal bucketing granularity.
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– Across-step Message Pruning: By extending BSP, this policy can prune
invalid received messages and avoid the generation of redundant messages.
Consequently, the message scale is reduced, especially for the steady state.

The remaining sections are structured as follows. Section 2 reviews the related
work. Section 3 gives the state-transition model. Section 4 describes the tunable
hash index. Section 5 proposes the Across-step Message Pruning policy. Section
6 presents our performance results. Section 7 concludes and offers an outlook.

2 Related Work

Many algorithms have been proposed for the SSSP computation. However, cen-
tralized in-memory algorithms can not process increasingly massive graph data.
Advanced parallel algorithms perform poorly if data are spilled on the disk [6,7].
For example, the Δ-stepping algorithm must adjust elements among different
buckets frequently [6] and Thorup’s method depends on a complex in-memory
data structure [7], which is I/O-inefficient. Existing external-memory algorithms
are dedicated to designing centralized I/O-efficient data structure [8]. Although
they have optimized the I/O complexity, the effect is limited for reducing the
scale of loaded wasteful data because their static mechanisms can not be ad-
justed dynamically during the computing.

Nowadays, most of existing indexes are in-memory or designed for the s-t
shortest path [14,15], which is not suitable for SSSP over large graphs. As a pre-
computed index, VC-index is proposed to solve the disk-resident SSSP problem
[9]. However, this centralized index is still static and requires nearly the same
storage space with the initial graph or more. Also, dynamic hash methods for
general applications have been proposed, but they are concerned on adjusting
the bucketing granularity with changes in the scale of elements [12,13]. While,
in our case, the element number (vertices and edges) in a graph is constant.

Implementing iterative computations on parallel frameworks has been a trend.
The representative platform is Pregel [2] based on BSP and its open-source im-
plementations, Giraph and Hama [3,5]. Pregel and Giraph are memory-resident,
which limits the data processing capacity of a given cluster. This problem also
exists for Trinity [16], another well-known distributed graph engine. Although
Hama supports disk operations, it ignores the impact of wasteful data. For
other disk-based platforms based on MapReduce, such as Hadoop, HaLoop and
Twister [11,17,18], restricted by HDFS and MapReduce, it is also difficult to
design optimization policies to eliminate the impact.

The parallel computing of SSSP can be implemented by a synchronous mech-
anism, such as BSP [10], or an asynchronous strategy [4]. Compared with the
former, although the latter accelerates the spread of messages and improves the
speed of convergence, a large scale of redundant messages will be generated,
which increases the communication cost. The overall performance of them de-
pends on a graph’s density when data are memory-resident [4]. However, for the
asynchronous implementation of disk-based SSSP, the frequent update of vertex
values will lead to fatal I/O costs, so BSP is more reasonable in this case.
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3 State-Transition Model

3.1 Preliminaries

Let G = (V,E, ω) be a weighted directed graph with |V | vertices and |E| edges,
where ω : E → N

∗ is a weight function. For vertex v, the set of its outgoing
neighbors is adj(v) = {u|(v, u) ∈ E}. Given a source vertex vs, δ(u), the length
of a path from vs to u, is defined as

∑
ω(e), e ∈ path. δ is initialized as +∞. The

SSSP problem is to find the minimal δ(u), ∀u ∈ V . By convention, δ(u) = +∞ if
u is unreachable from vs. We assume that a graph is organized with the adjacency
list and each vertex is assigned a unique ID which is numbered consecutively.

The P-SSSP computation proposed by Pregel is composed of a sequence of
SuperSteps (i.e., iterations). At the first SuperStep t1, only vs sets its δ(vs) = 0.
Then ∀u ∈ adj(vs), a message (i.e., candidate shortest distance) is generated:
msg(u) = 〈u,m〉, m = δ(vs) +ω(vs, u), and sent to u. At t2, vertex u with a list
of msg(u), namely lmsg(u), sets its δ(u) = min{δ(u),min{lmsg(u)}}. Here, if
msgi(u) < msgj(u), that means mi < mj . If δ(u) is updated, new messages will
be generated and sent to neighbors of u. The remaining iterations will repeat
these operations until ∀v ∈ V , its δ(v) is not be updated. Operations of one
SuperStep are executed by several tasks in parallel.

If a large graph exceeds the memory capacity of a given cluster, the topology
of the graph is firstly spilled on the disk. Furthermore, the overflowing mes-
sages will also be spilled. Data are divided into three parts and respectively
stored: message data, vertex data and outgoing edge data. For example, an
initial record {u, δ(u), adj(u)&ω, lmsg(u)} will be partitioned into three parts:
{lmsg(u)}, {u, δ(u)} and {adj(u)&ω}. {u, δ(u)} and {adj(u)&ω} are stored in
two files respectively but located on the same line, which avoids the cost of re-
structuring when sending messages. By this mechanism, the topology of a graph
will not be accessed when receiving messages. In addition, we only need to rewrite
{u, δ(u)} on the disk and ignore {adj(u)&ω} when updating δ.

Now, we give two notations used throughout this paper. We define load ratio
as LR = |Vl|/|V | , where |Vl| denotes the scale of vertices loaded from the disk.
Another notation is load efficiency, which is defined as LE = |Vp|/|Vl| , where
|Vp| denotes the scale of vertices with received messages lmsg.

3.2 Three Stages of Iterations and State-Transition

The iterative process of P-SSSP is a wavefront update from vs [2]. At the early
stage, the message scale of the SuperStep ti is small because only a few vertices
update their δ. However, most of these messages will lead to updating δ at ti+1

because a majority of vertices still keep δ = +∞. Then more new messages will
be generated since |adj(u)| > 1 generally. Consequently, the message scale will
increase continuously. If most of vertices have updated their δ, the speedup of the
message scale will decrease. As more and more vertices have found the shortest
distance, their δ will be updated no longer. Then the number of messages will
reduce until iterations terminate. We have run the P-SSSP implementation on
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our prototype system over real graphs, S-LJ and USA-RN (described in Section
6). As illustrated in Fig 1(a), the message scale can be simulated as a parabola
opening downwards. This curve can also express the trend of processed vertices,
since only vertices with received messages will be processed. Furthermore, we
divide the process into three stages: divergent → steady → convergent.
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Fig. 1. Three processing stages of P-SSSP

Considering the message scale of divergent and convergent states, we only
need to process a small portion of vertices. However, graph data must be loaded
in blocks since they are spilled on the disk, which leads to a low LE and incurs
considerable costs of reading wasteful data. In addition, the running time at
the steady state is more than that of other two states obviously (Fig 1(b)).
The reason is that massive messages lead to expensive costs of communication
and disk-accesses (LR is high because many vertices need to process received
messages). To improve the performance, we expect a low LR but a high LE.

We notice that there is no general standard to separate the three states be-
cause real graphs have different topology features. For example, S-LJ spreads
rapidly at the divergent state. However, it is the opposite for USA-RN, which is
a sparser graph. In section 4.2, we will introduce a bottom-upmethod to separate
different states according to dynamical statistics.

4 A Tunable Hash Index

4.1 Hash Index Strategy

It is essential to match {lmsg(u)} with {u, δ(u)} when updating δ. By a static
hash index, we can load messages of one bucket into memory. Then {u, δ(u)} and
{adj(u)&ω} in the same bucket are read from the local disk one by one to com-
plete matching operations. The static hash index can avoid random disk-accesses.
Data in buckets without received messages will be skipped, which improves LE,
but the effect is limited because |Vp| is changing continuously among the three
states. Therefore, we propose a tunable hash index to maximize the scale of
skipped graph data by adjusting the bucketing granularity dynamically.
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Three parts of data (described in Section 3.1) will be partitioned by the same
hash function. Illustrated in Fig 2, index metadatas of buckets are organized as a
tree which includes three kinds of nodes: Root Node (T ), Message Node (e.g.,H1)
and Data Node (e.g., H1

1 ). The Message Node is a basic unit for receiving and
combining (i.e., only save the minimal msg(u) for vertex u) messages. Initially,
every Message Node has one child node, Data Node, which is the basic unit
for loading {u, δ(u)} and {adj(u)&ω}. The metadata is a three-tuple {R,M,A}.
R denotes the range of vertex IDs. M is a key-value pair, where key is the
number of direct successor nodes and value = �R.length/key	. A is a location
flag. For a Message Node, it means the location of memory-overflow message files
(dir). For a leaf node, it includes the starting offset of {u, δ(u)} and {adj(u)&ω}.
For anyone of parallel tasks, we deduce that the number of its Message Nodes
depends on Bs, which is the cache size of sending messages. In order to simplify
the calculation, we estimate the cache size in the number of messages instead
of bytes. Bs is defined by disk I/O costs and communication costs of the real
cluster. Limited by the manuscript length, the details are not illustrated here.

MERGE SPLIT

... ...

T

... ...

msg=<670,12>

3 times

locate

Index Tree

NONE

Node R M A
T(root) [0,998) (3,333) null
H(1,0,0) [0,333) (1,333) dir
H(2,0,0) [333,666) (1,333) dir
H(3,0,0) [666,998) (1,332) dir
H(1,1,0) [0,333) (0,0) offset
H(2,1,0) [333,666) (0,0) offset
H(3,1,0) [666,998) (0,0) offset

H(1,1,1) [0,167) (0,0) offset
H(1,1,2) [167,333) (0,0) offset

H(3,1,1) [666,832) (0,0) offset
H(3,1,2) [832,998) (0,0) offset

H(1,1,0) [0,333) (2,167) null

H(3,1,0) [666,998) (2,166) null

1H

1
1H

1

1
1H 2

1
1H

T

1H 2H 3H

1
1H

2
1H

3
1H

T

3H

3
1H

1

3
1H 2

3
1H

Index
Metadata

m
er
ge

sp
lit

3H

1

3
1H

3
1H

Fig. 2. The tunable hash index

The number of Message Nodes is fixed, but Data Nodes may be split or
merged recursively during iterations. The former is only for leaf nodes. If one
bucket Hi

j is split into N i
j child buckets Hi

jk
, 1 ≤ k ≤ N i

j , that means vertex and
outgoing edge data are divided equally in consecutive order. Then, the metadata
of Hi

j needs to be updated (e.g., H3
1 ). The merging operation is only for a direct

predecessor node of leaf nodes. All child nodes will be merged and their parent
node becomes a new leaf node (e.g., H1

1 ).

k =
getID(msg(v))− θ

M.value
+ 1 (1)

To skip buckets without messages, we must locate the leaf node every message
belongs to. Given a message msg(v), we can locate Hi

jk
it belongs to by Formula

1, where θ is the minimal vertex ID in R of Hi
j . The time complexity is Ω((h−

1) · |E|/Nt), where h is the height of the tree and Nt is the number of parallel
tasks. In Fig 2, for 〈670, 12〉, we can find the leaf node H3

11 by locating 3 times.
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4.2 Adjust Hash Index Dynamically

Although splitting a leaf node can improve its load efficiency, the time of
splitting and the number of child nodes are two critical problems.

Algorithm 1. Global Adjusting Type for Leaf Nodes

Input : Statistics of the current SuperStep ti: S; slope of ti−1: K
Output: Global adjusting type of ti+1: AT ; slope of ti: K

′

1 Job Master

2 wait until all tasks report the vectork and activek

3 vector ←∑Nt
k=1 vector

k /* Nt: the number of parallel tasks */

4 active←∑Nt
k=1 active

k

5 put active into HistoryQueue and estimate K
′
by the last KΔ values

6 AT = max{vector(i)|0 ≤ i ≤ 2}
7 send {AT,K

′} to each task

8 Task k

9 vectork ← 〈0, 0, 0〉 /* count the number of every adjusting type */

10 while Sk �= φ do

11 Sk
i ← remove one from Sk /* Sk

i : the statistics of the ith leaf node */

12 type = getAdjustType(K,LEk
i ) /* type: Split(0), Merge(1), None(2) */

13 vectork[type]++

14 activek = activek + getActive(Sk
i ) /* the number of processed vertices */

15 send vectork and activek to Job Master

16 wait until Job Master returns {AT,K
′} and then set K = K

′

Algorithm 1 is used to obtain a global adjusting type (AT ) of the SuperStep
ti+1, which solves the first problem. It is also a bottom-up method to separate
the three states. AT includes Split, Merge and None. Algorithm 1 runs in a
master-slave mode between two consecutive SuperSteps. First, task k judges
the expected adjustment type for every leaf node by LEk

i and K, then records
statistics (Steps 10-14). LEi is load efficiency of the ith leaf node at ti. K is
the slope of a fitting curve about active’s changing. Second, Job Master sums
for all reports (Steps 3-4). K

′
(i.e., K of ti) and AT are computed, and then

sent to every task (Steps 5-7). Generally, KΔ = 5 by considering the robustness
and veracity. The three states can be separated by AT and K

′
as follows: the

divergent state, AT ∈ {Split,None}&K
′
> 0; the steady state, AT ∈ {Merge};

the convergent state, AT ∈ {Split,None}&K
′ ≤ 0.

In the function getAdjustT ype(K,LEk
i ), we first try to estimate the effect of

Split. If it is positive, type is Split, else None. If type of all child nodes of the
same parent node is None, we consider merging child nodes. Similarly, if the
estimated result is positive, type of them will be changed to Merge.

The effect of Split depends on the number of child nodes. We use a Markov
chain to find the optimal value, which solves the second problem. For a leaf node
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Hi
j which is split into N i

j child nodes, let V i
jk

be the set of vertices in Hi
jk

and
tV ij

p be the set of processed vertices at the SuperStep t, then tV ij
p ⊆ ⋃

V i
jk

= V i
j ,

where V i
j is the vertex set of Hi

j .
tΛ denotes the set of child nodes with received

messages at t, then tΛ = {k|tV ij
p ∩ V i

jk

= φ, 1 ≤ k ≤ N i

j}.
Theorem 1. For Hi

j, let the random variable X(t) be |tΛ| at the SuperStep t,
then the stochastic process {X(t), t ∈ T } is a homogeneous Markov chain, where
T = {0, 1, 2, ..., tup} and tup is an upper bound of the process.

Proof. In our case, the time set can be viewed as the set of SuperStep coun-
ters and the state-space set is I = {ai|0 ≤ ai ≤ N i

j}. In fact, tΛ denotes the
distribution of messages among child nodes. At the SuperStep t, vertices send
new messages based on their current δ and received messages from t-1. There-
fore, t+1Λ, t+2Λ, ..., t+nΛ only depend on tΛ. The transition probability from
tΛ to t+1Λ is decided by tΛ and δ. So X(t) has the Markov property. Consid-
ering I and T are discrete, then {X(t), t ∈ T } is a Markov chain. Furthermore,
Pxy(t, t+Δt) = Pxy(Δt) in the transition matrix P , so it is also homogeneous.

The original probability can be estimated by a sampling distribution. At tm, we
can get a random sample from tmV ij

p , then the distribution of vertices among

N i
j child buckets can be calculated. Optimistically, we think the probability dis-

tribution of going from the state ax to the state ay is an arithmetic progression.
Its common difference d = (LEi) · K and the minimal value is (2y)/x(x + 1).
Then, pxy, the 1-step transition probability, can be calculated. The Δm-step
transition probability satisfies the Chapman-Kolmogorov equation. Therefore,
P{X(tm+Δm) = ay|X(tm) = ax} = px(tm)Pxy(Δm). We can calculate the
mathematical expectation about the number of skipped buckets at tm+Δm:

Φ(N i
j , tm+Δm) =

Ni
j∑

x=1

Ni
j∑

y=1

(N i
j − x)px(tm)Pxy(Δm) (2)

Considering the time complexity described in Section 4.1, we can infer the split-
ting cost Ψ(N i

j , Δt) =
∑Δt

k=1(TcpuΩ(Δh|E|/Nt)), where Δh is the change of

height for the index tree after splitting. Specially, Δh = 0 if N i
j = 1. Tcpu is the

cost of executing one instruction. Δt = tup−tm. If K < 0, tup is the max number
of iterations defined by the programmer, else Δt = KΔ. The benefit of splitting
Hi

j is that data in some child buckets will not be accessed from the disk. Then
the saving cost is:

Ψ
′
(N i

j , Δt) = (
V

i
j + E

i
j

sdN i
j

)
Δt∑

Δm=1

Φ(N i
j , tm+Δm) (3)

where V
i
j is the vertex data scale of Hi

j in bytes, Ei
j is the outgoing edge data

scale and sd is the speed of disk-accesses. The candidate values of N i
j are C =

{〈n, ρ〉|1 ≤ n ≤ ε}, where ρ = Ψ
′
(n,Δt) − Ψ(n,Δt). ε is a parameter which

insures the size of our index will not be more than the given memory capacity.
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For Split, we find the optimal splitting value γ as follows: first, compute a
subset C

′
of C by choosing the maximal ρ in 〈n, ρ〉; then, ∀〈n, ρ〉 ∈ C

′
, γ is the

minimal n. If γ = 1, type = None, otherwise, type = Split. For Merge, we view
the parent node as a leaf node and assume γ be the real number of its child
nodes. Then, if ρ < 0, types of its child nodes will be changed to Merge.

5 Message Pruning Optimization

In this section, we propose a new iterative pattern, namely EBSP, by extend-
ing BSP. EBSP updates δ synchronously but processes messages across-step.
By integrating the Across-step Message Pruning (ASMP) policy, the scale of
redundant messages can be reduced effectively.

5.1 Analyze Messages of P-SSSP

Definition 1. Multipath-Vertex
Given a directed graph, let the collection of vertices be Vmul = {v|v ∈ Vi

∧
v ∈

Vj

∧
...
∧
v ∈ Vk, i 
= j 
= k}, where Vi is the collection of vertices located i-hop

away from the source vertex. Every vertex in Vmul is a Multipath-Vertex.

As shown in Fig 3, we assume s is the source vertex, then the 1-hop collec-
tion is V1 = {a, b, c, d, e} and the 2-hop collection is V2 = {e, f, g}. Obviously,
e ∈ V1

⋂
V2, is a Multipath-Vertex. As its successor vertices, f, g, h, i are also

Multipath-Vertices. For P-SSSP, the synchronous implementation based on BSP
can reduce the number of redundant messages [2]. For example, during the ith
SuperStep, vertex u receives two messages msgt1i and msgt2i at the time of t1
and t2, where t1 < t2. According to the synchronous updating mechanism, if
δ(u) > msgt1i > msgt2i , msgt1i is invalid and will be eliminated. Consequently,
redundant messages motivated by msgt1i will not be generated. However, our
in-depth analysis finds that the similar phenomenon will occur again and can
not be eliminated by BSP due to the existence of Multipath-Vertices. Consid-
ering the following scenario, u receives msgj at the jth SuperStep, j = i + 1.
If msgt2i > msgj , all messages generated by u at i are still redundant. Fur-
thermore, redundant messages will be spread out continuously along outgoing
edges until the max-HOP vertex is affected in the worst case. That incurs extra
costs of disk-accesses and communication. In addition, some buckets may not be
skipped because they have messages to process, even though the messages are
redundant.

Fig 3 illustrates the phenomena in a directed graph. At the 1th SuperStep,
δ(e) is updated to 4, then e sends messages to f and g. However, at the 2th
SuperStep, δ(e) is updated to 2 again (instead of 3). Then, the previous messages
are invalid. Consequently, f, g, h, i are processed twice.

5.2 Across-Step Message Pruning

For BSP, δ is updated only by depending on messages from the last SuperStep
(in Section 3.1). If we can cumulate more messages before updating δ, then the
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Fig. 3. The analysis of P-SSSP

impact of Multipath-Vertices will be relieved greatly. Consequently, we propose
the EBSP model by extending BSP.

Definition 2. EBSP
Let Mi+1 be the set of messages for the SuperStep ti+1. At ti, it is possible that

M s
i+1 
= φ, M s

i+1 ⊆ Mi+1, if messages are sent asynchronously. When processing
vertices at ti, the domain of referenced messages is Mi ∪M s

i+1.

EBSP will not affect the correctness of P-SSSP. Based on EBSP, we propose
a novel technique called Across-step Message Pruning (ASMP) to relieve the
phenomena of disseminating redundant messages. Algorithm 2 introduces the
processing of one Message Node Hk. First, we load all received messages from
t-1 into memory and put them into Mk

t after combining (in Section 4.1). Then
the memory-resident received messages (without combination) of t+1 will be
used to prune messages in Mk

t (Steps 3-8). A leaf node will be skipped if all
of its messages in Mk

t are pruned. By this policy, new messages of t+1 will be
obtained to optimize the synchronous update mechanism. Instead of combining
existing messages, our policy is denoted to avoiding the generation of redundant
messages, which is more effective. It can improve the performance of communi-
cation and disk-accesses. The scale of redundant messages which are eliminated
by ASMP can be estimated by Theorem 2.

Theorem 2. In Algorithm 2, for one vertex vr, if δ(vr) > msgkt (vr) >
msgks

t+1(vr), then the maximal number of pruned messages is Γ (vr):

Γ (vr) =

⎧
⎪⎨

⎪⎩

|adj(vr)|, vr = vmaxHOP

|adj(vr)|+
∑

∀vm∈adj(vr)

Γ (vm), vr 
= vmaxHOP
(4)

where vmaxHOP is the farthest one among reachable vertices of vr.

Proof. Normally, if δ(vr) > msgkt (vr), δ(vr) will be updated and then messages
will be sent to adj(vr). However, in Algorithm 2, msgkt (vr) will be pruned if
msgkt (vr) > msgks

t+1(vr). Recursively, at the SuperStep t + 1, ∀vm ∈ adj(vr),

δ(vm) will not be updated if mk
t+1(vm) > mks

t+2(vm) or mk
t+1(vm) ≥ δ(vm). The

pruning effect will not stop until vmaxHOP is processed.
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Algorithm 2. Across-step Message Pruning

Input : message set for Hk at the SuperStep t and t+ 1: Mk
t , M

ks
t+1

Output: message set after pruning: Mk
t

1 V k
t ← extract vertex IDs from Mk

t

2 V ks
t+1 ← extract vertex IDs from Mks

t+1

3 foreach u ∈ V k
t ∩ V ks

t+1 do
4 msgkt (u)← getMsg(Mk

t , u)

5 msgks
t+1(u)← min{getMsg(Mks

t+1, u)}
6 if msgkt (u) > msgks

t+1(u) then

7 put msgkt (u) into the Pruning Set Mp

8 M
k
t = Mk

t −Mp

9 return M
k
t

We notice that if Mk
t = Mk

t

⋃
Mks

t+1, δ will also be updated across-step, which
is called an Across-step Vertex Updating (ASVU) policy. ASVU can accelerate
the spread of messages. Therefore, the iteration will converge in advance com-
pared with ASMP. However, Mks

t+1 is only a subset of Mk
t+1, so its elements may

not be the minimal message value of t+1. For example, if δ(u) > msgkt (u) >
msgks

t+1(u), then δ will be updated at t. However, if msgks

t+1(u) > msgkt+1(u),
msgkt+1(u) ∈ Mk

t+1, messages generated at t are also redundant, which offsets

the pruning gains. Specially, compared with ASMP, if u ∈ V ks
t+1 ∧ u 
∈ V k

t and

δ(u) > msgks
t+1(u) > msgkt+1(u), extra redundant messages will be generated.

6 Experimental Evaluation

To evaluate our patterns, we have implemented a disk-resident prototype system
based on EBSP, namely DiterGraph. Data sets are listed in Table 1. The weight
of unweighted graphs is a random positive integer. All optimization policies
are evaluated over real graphs [19,20,21]. Then we validate the data processing
capacity of DiterGraph over synthetic data sets and compare it with Giraph-
0.1, Hama-0.5 and Hadoop-1.1.0. Our cluster is composed of 41 nodes which are
connected by gigabit Ethernet to a switch. Every node is equipped with 2 Intel
Core i3-2100 CPUs, 2GB available RAM and a Hitachi disk (500GB and 7,200
RPM).

6.1 Evaluation of Tunable Hash Index and Static Hash Index

Fig 4 illustrates the effect of our tunable hash index by comparing it to a static
hash index. Their initial bucket number computed based on Bs is equivalent.
However, the bucketing granularity of the static hash index will not be adjusted
dynamically. In our experiments, we set Bs as 4000 according to the speed of
communication and disk-accesses (described in Section 4.1). For USA-RN, we
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Table 1. Characteristics of data sets

Data Set ABBR. Vertices Edges Avg. Degree Disk Size

Social-LiveJournal1 S-LJ 4,847,571 68,993,773 14.23 0.9GB
Full USA Road Network USA-RN 23,947,347 5,833,333 0.244 1.2GB
Wikipedia page-to-page Wiki-PP 5,716,808 130,160,392 22.76 1.5GB
Synthetic Data Sets Syn-Dx 1-600M 13-8100M 13.5 0.2-114GB
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Fig. 4. Tunable hash index vs. static hash index (real data sets, 20 nodes)

only show the statistics of the first 300 iterations. In fact, it requires hundreds
of iterations to fully converge because the graph has a huge diameter.

As shown in Fig 4(a), for Wiki-PP, the speedup of our tunable index compared
to the static index is roughly a factor of 2. The tunable hash index has reduced
its average LR of one iteration by 80.6% (Fig 4(b)), which means a large portion
of wasteful data have been skipped. Therefore, its average LE (|Vp|/|Vl|) is
improved by roughly 5 times (Fig 4(c)). The average LR of USA-RN is also
reduced by up to 86%, but the overall performance is only improved by 28%,
which is less than Wiki-PP. The reason is that USA-RN is a sparse graph, then
the essential cost of warm-up (e.g., the initialization overhead of disk operations
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and communication) occupies a considerable portion of the running time, which
affects the overall effect of our index.

For S-LJ, the gain is not as obvious as that of USA-RN and Wiki-PP. By
analyzing the performance of every iteration (Fig 4(d)-(f)), we notice that, for
USA-RN and Wiki-PP, their resident time of the divergent or convergent state
is much longer than that of S-LJ. During these two states, just as illustrated
in Fig 4(g)-(i), the scale of wasteful data is reduced efficiently by the tunable
hash index. For example, P-SSSP over Wiki-PP took 290 iterations to converge.
Fig 4(i) shows a large subset of vertices have found the shortest distance within
the first 40 iterations. The remaining 250 iterations update less than 3% of δ.
Therefore, the cumulate effect of adjustments is tremendous. However, for S-LJ,
the number of iterations is only 44. Considering the latency of adjustments (Fig
4(g)), the overall gain is not remarkable.

6.2 Evaluation of ASMP and ASVU

This suit of experiments is used to examine the effect of ASMP and ASVU
(described in Section 5.2). They are implemented based on the tunable hash
index. As a comparative standard, the baseline method in experiments does not
adopt any policies (both ASMP and ASVU) to optimize the message-processing.
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Fig. 5. Analysis on ASMP and ASVU (real data sets, 20 nodes)

As shown in Fig 5(a)-(c), the ASMP policy can optimize the performance of
the steady state obviously. Especially for S-LJ, the overall performance can be
improved by up to 23% because its resident time of the steady state is relatively
longer than that of USA-RN and Wiki-PP. As illustrated in Fig 5(d)-(f), the
effect of ASMP is tremendous at the iteration where the received message scale
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has reached the peak. Exemplified by S-LJ, the number of received messages
(Mt) can be reduced by 56%. Then, compared with the baseline method, 45%
vertices will be skipped at this iteration, which reduces the cost of disk-accesses
(Fig 5(e)). Finally, the scale of new messages also decreases by 46% (Fig 5(f)),
which reduces the communication cost. We notice that the iterations of S-LJ and
Wiki-PP with ASVU are both completed in advance (Fig 5(a) and (c)) because
ASVU can accelerate the spread of messages. However, considering the impact
of redundant messages (Fig 5(d)-(f)), the contributions to overall performance of
ASVU is not as obvious as that of ASMP. Especially, for S-LJ, the performance
of ASMP is 16% faster than that of ASVU.

6.3 Evaluation of Data Processing Capacity and Overall Efficiency

Compared to Giraph, Hama and Hadoop, the P-SSSP implementation on Diter-
Graph can be executed over large graphs efficiently with limited resources. First,
we set the number of nodes as 10. As shown in Figure 6(a), benefitted from our
tunable hash index and ASMP, the running time of DiterGraph is two times
faster than that of Giraph. Compared with Hadoop and Hama, the speedup is
even 21 to 43. We are unable to run P-SSSP on Giraph when the vertex scale
is more than 4 million, as the system runs out of memory. Second, we evaluate
the scalability of DiterGraph by varying graph sizes and node numbers (Figure
6(b)). Given 40 nodes, when the number of vertices varies from 100 million to
600 million, the increase from 415 seconds to 3262 seconds demonstrates that the
running time increases linearly with the graph size. Given the graph size, such
as 600 million, the running time decreases from 9998 seconds to 3262 seconds
when the number of nodes increases from 10 to 40.
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Fig. 6. Data processing capacity and overall efficiency (synthetic data sets)

7 Conclusion and Future Work

In this paper, we propose a novel state-transition model for P-SSSP. Then a
tunable hash index is designed to optimize the cost of disk-accesses. By ex-
tending BSP, we propose the ASMP policy to reduce the message scale. The
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extensive experimental studies illustrate that the first policy can optimize the
performance during the divergent and convergent states. And the second policy
is effective for the steady state. In future work, we will extend our methods for
incremental-iterative algorithms, such as the connected components computa-
tion, belief propagation and the incremental PageRank computation.
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